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INTRODUCTION

Programmatics
This paper documents one aspect of the ongoing FY 01 In-house
Laboratory Independent Research Project CRANOF (a Complexity-
Reducing Algorithm for Near-Optimal Fusion), Project ZU014,
with Principal Investigator, Dr. D. Bamber, and co-investigator,
Dr. I. R. Goodman (both SSC San Diego), and with associate support
from Dr. W. C. Torrez (SSC San Diego) and Prof. H. T. Nguyen
(Department of Mathematical Sciences, New Mexico State University
and U.S. Navy American Society for Engineering Education Fellow
during summers at SSC San Diego). A preliminary version of this
paper can be found in [1, section 3.3].

Background on Underconstrained Conditional Probability Problems
Philosophy of Approach and General Motivations
To improve the timeliness and accuracy of decision-supported human
decision-making, one is faced with an array of crucial problems, including
how to handle large amounts of incoming and uncertain information from
disparate sources. These sources can be human-based or mechanical-
based, and the information can arrive in different forms, such as qualita-
tive and linguistic, numerical and statistical-probabilistic, or some mixture
of both. At SSC San Diego, the CRANOF project addresses such crucial
issues solely within the realm of statistics and probability. The issue of
underconstrained or underspecified probabilities is treated by a novel 
use of second-order probabilities (i.e., probabilities of probabilities) in
Bayesian framework. Underconstrained probabilities arise in a wide vari-
ety of problems, including quantitatively formulated rule-based systems,
tracking and correlation, assessment of network intrusions, information
retrieval, and simulation of human behavior in war games. This paper
serves as a beginning extension of the capabilities of CRANOF to include
linguistic-based information.

ABSTRACT
This paper covers issues relating
to the establishment of a sound
and conditional probability-
compatible rationale for generating
linguistic-based inference rules
concerning a population. By
extending previous preliminary
results, we detail, in a fully
rigorous manner and within the
confines of traditional probability
theory, that a comprehensive
technique can be derived that con-
verts linguistic-based conditional
information, couched only in
fuzzy-logic terms, into naturally
corresponding conditional proba-
bilities. In turn, we demonstrate
how such typically undercon-
strained conditional probabilities
can be combined for suitable
conclusions and decision-making,
via a new use of second-order
probability logic. This research
is part of the ongoing SSC San
Diego In-house Laboratory
Independent Research FY 01
project CRANOF (a Complexity-
Reducing Algorithm for Near-
Optimal Fusion).
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Quantitatively Formulated Rule-Based Systems
Consider quantitatively formulated rule-based systems, with the rules or
conditional relations symbolized typically as (a1 | b1), (a2 | b2),...—read "if
b1, then a1" (or equivalently, "a1, given b1," etc.), "if b2, then a2,"..., where
events or sets a1, b1, a2, b2,... may themselves represent quite complicated
logical combinations of simpler events or sets, and where it may or may
not be known what logical relations exist among such events. Each such
rule is also assigned quantitative reliability in the form of naturally corre-
sponding conditional probabilities. Thus, for some otherwise unspecified
probability measure P, rule (a|b) is assigned value P(a|b) = P(ab)/P(b), the
conditional probability of a given b, using standard Boolean and probabil-
ity notation and assuming antecedent probability P(b) > 0. Because typical
rule (a|b) is not perfect, in general P(a|b) < 1, but, on the other hand, one
would expect P(a|b) to be reasonably high. A common problem that such
rule-based systems address is: Consider incoming information in the form
of events, d1,..., dn, possibly gleaned from different sources, such as d1 =
"visibility is up to 1 mile," d2 = "winds between 15 mph and 30 mph," d3
= "enemy movement detected last night in Sector C,"..., dn = "political
situation with enemy country Q at level R," and a collection of reason-
ably related rules, such as (a1|b1), (a2|b2),..., (am|bm), where the aj, bj
involve not only parts or all of the dj (or various logical combinations of
them), but possibly other related events (or logical combinations of such).
Then, one wishes to test for viability of possible decisions, based upon
this information, such as c1 = "fully successful attack by us can be accom-
plished by attacking in Sectors C or D," c2 = "partially successful attack
by us can be accomplished by attacking Sectors D or H,"... . Symbolically,
one is considering the validity or degree of validity of the entailment
schemes Gi = [(a1|b1),..., (an|bn); (ci|d)], i = 1, 2,... , where d = d1&...&dn
(conjunction of all data), and where ((a1|b1),..., (an|bn)) can be considered
the premise set of Gi and (ci|d) its potential conclusion. Ideally, one would
like to know just what each P(ci|d) would be, based on having either, say,
the exact threshold situation holding, i.e., P(aj|bj) = tj, j = 1,..., n, or, the
lower bound threshold situation holding, i.e., having P(aj|bj) ≥ tj, where all
the thresholds tj are known or estimable in either situation. However, in
general, it is readily demonstrated that the n equalities (or inequalities) are
not enough to determine P and/or P(ci|d) completely. Thus, one is faced
with the problem of best estimating, in some sense, just what P and/or
P(ci|d) should be.

Adams’ Approach to Analyzing Quantitatively Formulated Rule-Based Systems
In a series of papers [2, 3], E. W. Adams proposed, in effect, the estimate 
of P(cj|d) to be a pessimistic one in the form of his "minimum conclusion" 
function, using multivariable abbreviation tJ for (tj)j in J, (a|b)J for (aj|bj)j in J, 
P(a|b)J ≥ tJ for P(aj|bj) ≥ tj, j in J, 1J for column vector of all 1’s indexed 
by J, etc.,

estimateHPL of (P(ci|d) from Gi)
= minconc(Gi)(tJ) = inf{P(ci|d): for all possible probability measures P such that P(a|b)J ≥ tJ},   (1)



DATA ACQUISITION AND EXPLOITATION60

with P(ci|d) for the exact threshold situation analogously estimated. The
subscript ( )HPL is used to indicate "High Probability Logic," since Adams
also introduced the idea of an entailment scheme being HP-valid or HP-
invalid, which, in the case of any Gi here simply means for the former
that 

Gi is HPL-valid     iff     limit(minconc(Gi)(tJ)) = 1. (2)
(tJ↑1J)

But, unfortunately, both the minconc function and its limiting forms to
test for HPL-validity/invalidity produce a number of results very much at
odds with commonsense reasoning, including the fact that three very fun-
damental entailment schemes, transitivity (or hypothetical syllogism) [(a|b),
(b|c); (a|c)] (the heart of any rule-based system); contraposition [(a|b);
(b�|a�)]; and strengthening of antecedent [(a|b); (a|bc)] are all HPL-invalid.
In fact, one can find P’s that satisfy their premise thresholds for any
choice of tJ close to (but not exactly equal to) 1J, but for which the corre-
sponding conclusion probabilities are arbitrarily close to (or actually
equal to) 0. Moreover, more generally, Eq. (2) can be complemented by
the fact that any

Gi is HPL-invalid    iff     limit(minconc(Gi)(tJ)) = 0. (3)
(tJ↑1J)

Finally, Adams pointed out another type of validity, CPL (Certainty
Probability Logic), that, although still based on the minconc function, can
be characterized as "too optimistic" in contrast with HPL, whereby the
criterion is

Gi is CPL-valid    iff     minconc(Gi)(1J)) = 1. (4)

Close connections exist between CPL validity/invalidity (the latter satis-
fying a relation analogous to that of Eq. (3)) and that of CL (classical
logic) validity or invalidity, noting 

Gi is CL-valid     iff      &(b�� ab)J � d�� cid. (5)

(For further analysis, criticism, and extension of Adams’ ideas, see [3].)

CRANOF Approach to Analyzing Quantitative Rule-Based Systems and 
Other Underconstrained Probability Problems
The previous conclusions show that the minconc function is not a reason-
able measure (for reasonably high thresholds) of the degree of validity/
invalidity of an entailment scheme and also show that the HP-validity/
invalidity test is too stringent. Therefore, it seemed natural to replace the
extremal minconc function by the more moderating meanconc function
(well-justified from decision analysis in the form of conditional expecta-
tion and justified as always admissible, least-squares error, etc.—see any
standard texts such as Rao [4] or Wilks [5]) within a Bayesian framework,
where the unknown probability measure P here is treated as a random
quantity with some appropriately assigned prior distribution, subject to
the given premise set threshold constraints. Utilizing additional new theo-
retical results [6], an "optimal" choice of prior or priors essentially must
come from the well-known Dirichlet family of distributions. It should be
noted that, unlike the minconc function, the meanconc function in the
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unity-limiting threshold case can take on nontrivial values and, in a natu-
ral sense, at any fixed threshold level, provides a reasonable measure of
degree of validity of that entailment scheme under consideration. In par-
ticular, in full agreement with commonsense reasoning, transitivity, con-
traposition, and strengthening of antecedent are all SOPL-valid, where
SOPL stands for Second-Order Probability Logic and where one defines
validity of any Gj as

Gi is SOPL-valid        iff      limit(meanconc(Gi)(tJ)) = 1, (6)
(tJ↑1J)

SOPL-validity depending on some degree, of course, on the particular
choice of prior for P. However, it has been pointed out (Bamber [7] and
personal communications) that the limit in Eq. (4) remains the same as if
the prior of P is a uniform distributional one, when the corresponding
probability density function is bounded uniformly above and below
(from zero) over its natural domain (again, see references).

Also, see [8] for additional background on both the theoretical structure
of the meanconc function and its practical implementational form
CRANOF—whereby a significant reduction in the complexity of com-
puting meanconc(Gi)(tJ) is achieved by, in effect, reducing the premise set
of Gi to a single constraint, also taking into account the unity-limiting
threshold behavior of meanconc ([7]). Finally, Table 1 is presented below
to illustrate a few typical evaluations of meanconc(G) for relatively simple
entailment schemes G with P assigned a uniform prior distribution [8].

TABLE 1.  Abridged table of calculations of degree-of-entailment functions, minconc and meanconc, for fixed threshold levels, and a
comparison of CPL-, SOPL-, and HPL-validities for different types of entailment schemes.
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EXTENDING APPLICABILITY OF CRANOF TO LINGUISTIC-BASED 
SYSTEMS
In considering linguistic-based information in rule-based systems and in
formulating the linguistic analogue of the underconstrained conditional
(including unconditional) probability problem, the role of fuzzy logic
comes immediately to mind. This is based in part on the great practical
success of fuzzy logic in running systems such as elevators, washing
machines, etc., and on the now very large body of scientific literature sup-
porting the modeling of linguistic information, relations, and decision
processes via fuzzy logic. (See, e.g., past Proceedings of IEEE Interna-
tional Conferences on Fuzzy Systems or the Proceedings of the Joint
Conference on Information Sciences, as well as basic texts, such as Dubois
& Prade’s now classic treatise [9] and Nguyen & Walker’s [10].) 

On the other hand, there still exists a lively controversy considering the
merits of using probability theory and techniques in place of fuzzy logic
and vice versa. (See Goodman’s summary and listing of literature papers
directly involved in this controversy [11].) This leads to the following area
in which this author and H. T. Nguyen have played some role over the
past several years: the issue of the possible direct connection between fuzzy
logic and probability theory [12, 13, and 1]. Until this is completely
resolved, it is this author’s opinion that a comprehensive view of data
fusion, which both theoretically and practically integrates linguistic-based
information with probabilistic-based information, will not be achieved. In
particular, this applies to rule-based systems, where the fuzzy logic com-
munity has developed a common approach that is claimed to be more sat-
isfactory than any probability approach. 

This paper once again points out the existence of deep, but tractable, rela-
tions among fuzzy logic, linguistic-based principles, probability theory,
and commonsense reasoning mainly through the use of two basic mathe-
matical tools: SOPL/CRANOF (as briefly described in the first section),
and the representation theory of fuzzy sets by the one-point coverages of
random sets (see [12, 13]) in conjunction with other recently developed
mathematical tools (conditional and relational event algebra [14; 15, sec-
tion 3]). In particular, homomorphic-like relations were established, con-
necting fuzzy-logic concepts and corresponding random-set concepts,
where each fuzzy-set membership function involved is, in effect, inter-
preted as the weakest way to specify any of a class of corresponding ran-
dom subsets of the fuzzy set’s domain. These relations include natural
random-set interpretations of various combinations of fuzzy-logic opera-
tors and Zadeh’s well-known "extension theorem." This time, these con-
nections are extended to include the formulation and use of inference
rules obtained from a population of interest. The results presented here
extend preliminary efforts provided in Goodman & Nguyen [1], where it
was demonstrated that one type of fuzzy-logic approach to the modeling
of inference rules for a population, relative to a given collection of attrib-
utes, using the ratio of fuzzy cardinalities or averaged membership level of
the attributes, could also be interpreted in a probability framework. In
addition, by using similar techniques, it is shown how other fuzzy-logic
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concepts, commonly thought of as not directly relating to probability,
may now also be put into a complete probabilistic setting, including the
illustration for normalization of membership functions.

MATHEMATICAL RESULTS ESTABLISHING GENERAL FUZZY LOGIC 
POPULATION CONDITIONING PROBLEM AS AN UNDERCON-
STRAINED CONDITIONAL PROBABILITY PROBLEM TREATABLE 
VIA SOPL/CRANOF
As in the previous sections, standard Boolean algebra and probability 
theory notation will be employed, with [0,1] indicating unit interval; {0,1}
indicating the two element set containing 0, 1; R indicating the real (or
Euclidean) line and Rm indicating the real (or Euclidean m-space), P(D)
indicating the power class of D (sometimes written 2D––the class of all
subsets of D), etc. "Equal by definition" is denoted as =d. For background
on copulas, see Schweizer & Sklar [16] and the recent excellent mono-
graph by Nelsen [17]. Recall that copulas are any joint cdf’s (cumulative
probability distribution functions), all of whose one-dimensional marginal
cdf’s correspond to identical uniformly distributed rv’s (random variables)
over [0,1]. 

Theorem 1. Modification of Goodman [18] 
Let D be a finite set, f, g:D→[0,1] any two fuzzy-set membership func-
tions, and cop: [0,1]D×D→[0,1] any copula with that domain, with (x,y)-
marginal copulas indicated by, e.g., copx,y, x, y in D, etc. Then:

(i) There is a probability space (�,B,P) and a joint collection of 
0-1-valued rv’s, Zf,x, Zg,y:�→{0,1}, for all x, y in D with overall joint cdf
Ff,g,cop = copo((Ff,x)x in D, (Fg,y)y in D): RD×D→[0,1] (via Sklar’s Theorem
[16]), and, indicating the joint marginal (x,y)-components of cop, as
copx,y, the joint cdf of (Zf,x, Zg,y) is, correspondingly, Ff,g,cop,x,y(., ..) =
copx,yo(Ff,x(.), Fg,y(..)), where o indicates functional composition and Ff,x,
Fg,y are each one-dimensional cdf’s corresponding to mass-point probability
functions hf,x, hg,y, respectively, where 

P(Zf,x = 1) = hf,x(1) = f(x);  P(Zf,x = 0)  = hf,x(0) = 1-f(x); 
P(Zg,y = 1) = hg,y(1) = g(y); P(Zg,y = 0) = hg,y(0) = 1-g(y); (7)

whence

0, if s < 0,                              0, if s < 0,
Ff,x(s)=�1-f(x), if 0 � s < 1,  Fg,y(s)=�1-g(y), if 0 � s <1,  all x, y in D (8)

1, if 1 � s;                             1, if 1 � s;

(ii) Define random sets S(f, cop), S(g, cop):�→P(D), S(f, g, cop):
�→P(D) ×P(D) as follows, for each ω in �:

S(f, g, cop)(ω) = S(f, cop)(ω)× S(g, cop)(ω) = {(x,y): x, y in D, Zf,x(ω) Zg,y(ω) = 1};
S(f, cop)(ω) = {x: x in D, Zf,x(ω) = 1};    S(g, cop)(ω) = {y: y in D, Zg,y(ω) = 1}; (9)

whence, by straightforward combinatoric considerations, the entire 
probability distributions of the marginal random subsets of D, S(f, cop),
S(g, cop), as well as the joint random subset of D×D, S(f, g, cop), are com-
pletely determined.
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(iii) For any x, y in D, the following equality of one-point coverage events
hold:

(x in S(f, cop))  = (Zf,x = 1) ;  (y in S(g, cop))  =  (Zg,y= 1); (10)

((x,y) in S(f, g, cop)) = (x in S(f, cop)) & (y in S(g, cop)) = (Zf,x = 1) & (Zg,y= 1). (11)

(iv) For any x, y in D, the following one-point coverage representations
for f, g hold:

P(x in S(f, cop))  = P(Zf,x = 1) = f(x) ;  P(y in S(g, cop))  = P(Zg,y= 1) = g(y); (12)

P((x in S(f, cop)) & (y in S(g, cop))) = P((Zf,x = 1) & (Zg,y= 1))
= 1- P(Zf,x = 0) - P(Zg,y = 0) + P((Zf,x = 0) & (Zg,y= 0))
= 1- P(Zf,x = 0) - P(Zg,y = 0) + P((Zf,x≤ 0) & (Zg,y≤ 0))
= 1- (1-f(x)) – (1-g(y)) + Ff,g,copx,y(0, 0)
=  f(x) + g(y) – 1 + copx,y(1-f(x), 1-g(y))
=  f(x) + g(y) – cocopx,y(f(x), g(y))
=d copx,y∧ (f(x), g(y)), (13)

where we use the relation
Ff,g,copx,y(0, 0) = copx,yo(Ff,x(0), Fg,y(0))

= copx,yo(hf,x(0), hg,y(0))
= copx,yo(1–f(x), 1–g(y))

and where the functions cocop, cop∧ are called the cocopula, survival cop-
ula, respectively, of cop (the latter apparently being the special designation
of Nelsen for modular transform [17, section 2.6]), where, for any s, t in
[0,1]:

cocop(s, t) =d 1 – cop(1-s, 1-t)  ;  cop∧ (s, t) =d s+t – cocop(s,t). (14)

(v) Specializing (iv) for x = y in D arbitrary,

P(x in S(f, cop) ∩ S(g, cop)) = P((x,x) in S(f, g, cop)) = copx,y
∧ (f(x), g(x)). (15)

(vi) As copula cop is allowed to vary arbitrarily, the full solution set of
distribution-distinct random subsets of D that are one-point coverage
equivalent to f, g, respectively in the sense of Eq. (12), is exhausted.     ■

Remark 1.  Note first that cocop is the DeMorgan transform of cop—so
that if one thinks of cop as a generalized conjunction or "and" operator—
as in fuzzy logic (with the usual desirable properties of being nondecreas-
ing in its arguments and having appropriate boundary properties when
one of the arguments is 0 or 1), then, naturally, cocop can be thought of as
a general disjunction or "or" operator. Nelsen [17, section 2], shows that
the survival copula is always a legitimate copula and shows the characteri-
zation

cop∧ = cop   iff   cop  is radially symmetric, (16)

where the latter means that the joint r.v. Y represented by cop is such that
Y – (1/2, 1/2) and (1/2, 1/2) – Y have the same distribution. In particular,
radial symmetry––and hence the validity of Eq. (16)––holds for all
Gaussian copulas Ψρ (Ψ-1(.), Ψ-1(..)), where Ψρ is the joint cdf of

distribution Gaussian (02, �1  ρ�) and Ψ is the cdf of the standardized
ρ 1
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one-dimensional Gaussian distribution Gaussian (0,1) and all of Frank’s
Archimedean copula family [17], [19] (i.e., associative, commutative with
cop(s,s) < s, for 0 < s < 1)––which includes the copulas prod and minsum,
as well as the special copula min, where for all s, t in [0,1], min, prod are
the usual arithmetic minimum and product of s, t, respectively, while min-
sum(s,t) is given as

minsum(s,t) = min(s+t-1, 0). (17)
■

Theorem 2. Extension of Goodman & Nguyen [13]
Suppose that D is a finite set, f, g:D→[0,1] are any two fuzzy set member-
ship functions, cop: [0,1]D×D→[0,1] is any copula with that domain, and
w:D→[0,1] is a probability function. Define 

((f|g)cop,w =d � ( w(x)·cop∧ (f(x), g(x))) / � ( w(x)·g(x)). (18)
xinD xinD

Then, in the sense of Theorem 1, there is a probability space (Ω,B,P) and
random sets S(f, cop), S(g, cop): Ω →P(D), S(f,g, cop): with the one-point
coverage relations holding as in Eqs. (12), and, without loss of generality,
there exists a random variable V:Ω→D, independent of S(f, g, cop), and
hence of S(f, cop), S(g, cop), such that the probability function of V is w,
so that

(f|g)cop,w = P(af, cop | bg, cop), (19)

an ordinary conditional probability, where events af,cop , bg,cop in B are
defined as the two-stage randomization events

af, cop =d (V in S(f, cop)) ,  bg, cop = (V in S(g cop)) , (20)

so that in reduced form,

P(af, cop | bg, cop) = P(af, cop& bg, cop | bg, cop) = P(V in S(f, cop)∩ S(g, cop)) / P(V in S(g cop)). (21)

Proof: Use the usual conditioning property of probabilities, independence
of V, and Eq. (11) at each outcome of r.v. V,

P(V in S(f,cop) and V in S(g, cop)) = EV(P(V in S(f,cop) and V in S(g, cop) | V))
= EV(cop^(f(V), g(V))) = � ( w(x)·cop^(f(x), g(x))). (22)

xinD

Similarly (and more simply), now using Eq. (12) in place of Eq. (13),

P(V in S(g, cop)) = Ev(P(V in S(g,cop) | V)) = Ev(g(V)) =� ( w(x)·g(x)). (23)
xinD

The desired results hold by dividing Eq. (22) by Eq. (23). ■

Remark 2 and an Example. In Theorem 2, for the special case of w cor-
responding to a uniform distribution over population D, canceling the
1/card(D) factor, and usually––but not always choosing cop to be either
min or prod––the numerator of the quantity (f|g)cop, w reduces to the
popular fuzzy-logic concept of the fuzzy cardinality of f "and" g for pop-
ulation D, i.e., to what extent the entire population D has characteristics
described by f "and" g, while, similarly, the denominator represents the
fuzzy cardinality of g (by itself) for population D. In turn, the arithmetic
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division of these, i.e., the quantity (f|g)cop,w becomes the relative fuzzy
cardinality of f "and" g for D compared to fuzzy cardinality of g for D,
i.e., the overall fuzzy conditioning of f to g with respect to population D.
The latter, beginning with Zadeh’s ideas [20, 21], followed by Dubois &
Prade’s modifications [22], and Kosko’s related concept of fuzzy subset-
hood [23], are used ubiquitously in the fuzzy-logic community for rea-
soning. In this process, one considers the premise set of a particular
linguistic entailment of interest, the latter being formally the same as the
probability-framed previous Gi = [(a|b)J; (ci|d)], but now where each (aj|bj)
is replaced by a fuzzy conditional—in its general form the same as
(fj|gj)cop,w —formed as in Eq. (18), now with f replaced by fj, g by gj (for
possibly pre-logically compounded fuzzy-set membership functions), j in
J; and with similar remarks applicable to the potential conclusion (ci |d)
replaced by (fo,i|go)cop,w, for some fuzzy sets fo,i, go, etc. But, Theorem 2
(with suitable modifications, where required) essentially shows that any
such (fj|gj)cop,w = P(afj, cop | bgj,cop), with a similar relation holding the
potential conclusion. Moreover, the variability of P subject to whatever
arbitrary but fixed levels tJ are set for the premise collection holds in the
same meaningful manner as in the case where one began the problem in a
probability framework, i.e., for typical entailment schemes of the form Gi.
As an application of this, suppose one considers the transitivity scheme,
which Zadeh has also considered and modeled his premise set as indicated
above, but has used a method solely developed within fuzzy logic for
determining what the appropriate conclusion should be [21]. Thus, three
attributes are present, where, e.g., population D here is the set of all
enemy ships in area A, "ships with type 1 weapons onboard" corresponds
to known or estimated fuzzy-set membership function f over D; "ships
with elongated hulls" corresponds to known or estimated fuzzy-set mem-
bership function g over D; "ships with signature pattern Q" correspon-
ding to known or estimated fuzzy-set membership function h over D.
Moreover, other truth modifiers may be present, such as "it is mostly
true," "it is somewhat true," etc. Here, for simplicity, suppose for the
premise set, one actually has "it is highly true that the enemy ships in A
with signature pattern Q have elongated hulls," "it is moderately likely
that an enemy ship in A with an elongated hull has type 1 weapons
onboard." Can one conclude "it is x-likely that an enemy ship in A with
signature pattern Q has type 1 weapons onboard," where the degree of
truth x is to be determined? Assume that "it is highly true" is represented
by a known or estimated fuzzy-set membership function M over [0,1],
which is monotone increasing, "it is moderately likely" is also represented
by a (different—not as steep toward 1 as M, etc.) known or estimated
fuzzy-set membership function N over [0,1], where M(r) = N(r) = r, for r
= 0 or 1. Hence, for any arbitrary levels s, t in [0,1], the conditional fuzzy
relations here are, for some choice of copula and population weighting
function w, 

M((f|g)cop,w) = s , N((g|h)cop,w) = t  iff   (f|g)cop,w = M-1(s) , (g|h)cop,w = N-1(t) 
iff, using Theorem 2,  P(af, cop | bg,cop) = M-1(s), 

P(bg, cop | ch,cop) = N-1(t). (24)
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Thus, for any given levels s, t, one can now consider the SOPL-estimate
of the potential conclusion for transitivity, P(af, cop | bg,cop), with respect
to the premise set above at thresholds s, t, where the entire entailment
scheme is

G = [(af, cop | bg,cop), (bg, cop | ch,cop); (af, cop | ch,cop)]; (25)

meanconc(G)(M-1(s), N-1(t)) = EP(P(af, cop | ch,cop)

P(af, cop | bg,cop) = M-1(s) , P(bg, cop | ch,cop) = N-1(t)). (26)

In turn, Table 1 shows that under a uniform distributional assumption on
what P could be, subject to its constraints in the premise set of G, for any
given s, t in [1/2, 1]

meanconc(G)(M-1(s), N-1(t)) =  ρ(M-1(s), N-1(t)), 

where, for any s, t in [1/2, 1],

ρ(s,t) =d st + (1-t)/2 – p(s,t)/q(s,t);  p(s,t) =d s(1-s)(2s-1)t(1-t2);  
q(s,t) =d t+2t2 + (s(1-s)(1-t)(2+3t-t2)),                (27)

where,

ρ(s,t) ≈  ρο(s,t) =d st + (1-t)/2 , for values of s, t sufficiently close to 1. (28)

Hence, the posterior conditional (given the premise constraints for any 
s, t) is approximately equal to ρο(Μ−1(s), N-1(t)), which can be interpreted
also as a truth modifier with respect to two variables, noting its limit is
unity as s, t approach unity, etc. Of course, all of the above applies to any
fuzzy-logic entailment scheme relative to the original premise sets utiliz-
ing overall fuzzy conditioning for some population D.

Remark 3.  In the same spirit of Theorem 2, other fuzzy-logic concepts
can now be fully interpreted. Due to space limitations, only the example
of fuzzy normalization will be considered here. In this situation, a fuzzy
membership function, say, f:D→[0,1] is given, followed by its normaliza-
tion function norm(f):D→[0,1], which is now obviously a legitimate prob-
ability function over finite population D, where

norm(f) = (1/�(f(x)) )·f . (29)
xinD

But, if one considers, à la Theorem 1, for any choice of copula cop, a
probability space (Ω,B,P), for which, without loss of generality, there is
both a random set S(f, cop):Ω→P(D) and an independent random variable
V:Ω→D uniformly distributed over D, with the one-point coverage rela-
tion holding 

P(x in S(f, cop)) = f(x), all x in D, (30)

for any x in D, specializing Eq. (23) with g replaced by f,

P(V = x | V in S(f, cop)) = P(V = x and x in S(f, cop)) / P(V in S(f, cop))
= ((1/card(D))·f(x)) /� (1/card(D))·g(x)) =  norm(f)(x), (31)

xinD
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showing fuzzy normalization is actually a simple conditional probability
restriction of the two-stage randomization for one-point coverages. A
future paper will deal with related issues.

REFERENCES
1. Goodman, I. R. and H. T. Nguyen. 1999. "Application of Conditional and 

Relational Event Algebra to the Defining of Fuzzy Logic Concepts," 
Proceedings of Signal Processing, Sensor Fusion & Target Recognition VIII, 
Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 3720, 
pp. 37–46.

2. Adams, E. W. 1986. "On the Logic of High Probability," Journal of 
Philosophical Logic, vol. 15, pp. 255–279.

3. Adams, E. W. 1996. "Four Probability-Preserving Properties of Inferences," 
Journal of Philosophical Logic, vol. 25, pp. 1–24.

4. Rao, C. R. 1973. Linear Statistical Inference & Its Applications, 2nd Ed., 
Wiley, New York, NY.

5. Wilks, S. S. 1963. Mathematical Statistics, Wiley, New York, NY.

6. Goodman, I. R. and H. T. Nguyen 1999. "Probability Updating Using 
Second-Order Probabilities and Conditional Event Algebra," Information 
Sciences, vol. 121, pp. 295–347.

7. Bamber, D. 2000. "Entailment with Near Surety of Scaled Assertions of High
Conditional Probability," Journal of Philosophical Logic, vol. 29, pp. 1–74.

8. Bamber, D. and I. R. Goodman. 2000. "New Uses of Second-Order 
Probability Techniques in Estimating Critical Probabilities in Command and 
Control Decision-Making," Proceedings of the 2000 Command & Control 
Research & Technology Symposium, Naval Postgraduate School, 
http://www.dodccrp.org/2000CCRTS/cd/html/pdf_papers/Track_4/124.pdf.

9. Dubois, D. and H. Prade. 1980. Fuzzy Sets & Systems: Theory and 
Applications, Academic Press, New York, NY.

10. Nguyen, H. T. and E. A. Walker. 1997. A First Course in Fuzzy Logic, CRC 
Press, New York, NY.

11. Goodman, I. R. 1998. "Random Sets and Fuzzy Sets: a Special Connection," 
Proceedings of the International Conference on Multisource-Multisensor 
Information Fusion (Fusion’98), vol. 1, pp. 93–100.

12. Goodman, I. R. and H. T. Nguyen. 1985. Uncertainty Models for Knowledge-
Based Systems, North-Holland Press, Amsterdam.

13. Goodman, I. R. and G. F. Kramer. 1997. "Extension of Relational and 
Conditional Event Algebra to Random Sets with Applications to Data 
Fusion," in Random Sets: Theory & Applications (J. Goutsias, R. P. Mahler, 
and H. T. Nguyen, eds.), Springer, New York, NY, pp. 209–242.

14. Goodman, I. R. and H. T. Nguyen. 1995. "Mathematical Foundations of 
Conditionals and Their Probabilistic Assignments," International Journal of 
Uncertainty, Fuzziness & Knowledge-Based Systems, vol. 3, no. 3 
(September), pp. 247–339.

15. Goodman, I. R., R. P. Mahler, and H. T. Nguyen. 1997. Mathematics of Data 
Fusion, Kluwer Academic, Dordrecht, Holland.

16. Schweizer, B. and A. Sklar. 1983. Probabilistic Metric Spaces, North-Holland, 
Amsterdam.

17. Nelsen, R. B. 1999. An Introduction to Copulas (Lecture Notes in Statistics, 
no. 139), Springer, New York, NY.

I. R. Goodman 
Ph.D. in Mathematics, Temple
University, 1972
Current Research: Mathematical
foundations of data fusion via
conditional probabilistic logic;
Boolean conditional event
algebra; one-point random set
representations of fuzzy logic. 



18. Goodman, I. R. 1994. "A New Characterization of Fuzzy Logic Operators 
Producing Homomorphic-Like Relations with One Point Coverage of 
Random Sets," in Advances in Fuzzy Theory & Technology, (P. P. Wang, ed.), 
Duke University, Durham, NC, vol. 2, pp. 133–159.

19. Frank, M. J. 1979. "On the Simultaneous Associativity of F(x,y) and x+y-
F(x,y)," Aequationes Mathematicae, vol. 19, pp. 194–226.

20. Zadeh, L. A.1985. "Syllogistic Reasoning as a Basis for Combination of 
Evidence in Expert Systems," Proceedings of the International Joint 
Conference on Artificial Intelligence (IJCAI-85), vol. 1, pp. 417–419.

21. Zadeh, L. A. 1978. "PRUF: a Meaning Representation Language for 
Natural Languages," International Journal of Man–Machine Studies, vol. 10,
pp. 395–460.

22. Dubois, D. and H. Prade. 1988. "On Fuzzy Syllogisms," Computational 
Intelligence, vol. 4, pp. 171–179.

23. Kosko, B. 1992. Neural Networks and Fuzzy Systems, Prentice-Hall, 
Englewood Cliffs, NJ.

❖

Use of One-Point Coverage Representations 69


